Khan Academy Static

Unbounded_limits_vertical_asymptotes_

Some limits don't approach a specific value, but instead become boundlessly large as they approach the limiting value. For example, the limit of 1/x as we approach x=0 from the right. Learn about this type of limits and how it relates to vertical asymptotes.

Limits_of_piecewise_functions

Remember one-sided limits? Well, these are very useful when dealing with piecewise functions. For example, analyze the limit at x=2 of the function that gives (x-2)² for values lower than 2 and 2-x² for values lager than 2.

Continuous_functions

Continuous functions are continuous at all of the points in their domains. In essence, these are functions whose graphs can be drawn with a single brush stroke.

Review_Continuity

Review your understanding of continuity with some challenge problems.

Intermediate_value_theorem

The intermediate value theorem states that if a continuous function, f, with an interval, [a, b], as its domain, takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point within the interval. This is a basic but important property of all continuous functions.

Limits_of_trigonometric_functions

Find limits of trigonometric functions by manipulating the functions (using trigonometric identities) into expressions that are nicer to handle. For example, find the limit of sin(x)/sin(2x) at x=0.

Limits_of_combined_and_composite_functions

Practice your basic understanding of limits and continuity with more complex cases.

Limits_at_infinity_horizontal_asymptotes_

For some expressions, as we increase x infinitely, approach a finite value. For example, 1/x approaches 0 as x becomes infinitely large. Learn about these types of limits, and how they relate to horizontal asymptotes.

Limits_from_tables

Find limits by creating a table of values and analyzing the trend.

Continuity_at_a_point

A function is continuous at a point if its limit at that point exists and is equal to the actual function's value at that point.

Review_Infinite_limits

Review your understanding of infinite limits with some challenge problems.

Limits_from_graphs

Find limits by analyzing graphs.

Removable_discontinuities

Removable discontinuities are points where a function isn't continuous but can become continuous with a small adjustment. Analyze such points and determine what adjustments should be made to "remove" them.

Review_Limits_basics

Review your understanding of the basics of limits with some challenge problems.

Limits_introduction

A limit is the value that a function or sequence "approaches" as the input or index approaches some value. In this tutorial, we supply an intuitive understanding of limits.

Limits_skill_checks

Check your understanding of limits!

One_sided_limits

Learn what one-sided limits are and analyze them via graphs.

Review_Limits_from_equations

Review your limit-evaluation skills with some challenge problems.

Limits_from_equations_factoring_rationalizing_

There are some limits that want us to work a little before we find them. Learn about two main methods of dealing with such limits: factorization and rationalization. For example, find the limit of (x²-1)/(x-1) at x=1.

Formal_definition_of_limits_epsilon_delta_

Now that you have an intuitive understanding of limits, let's do what mathematicians do best and define them rigorously! This definition may be hard to grasp at first, but its beauty will get you in the end.

Squeeze_theorem

The Squeeze theorem (or Sandwich theorem) states that for any three functions f, g, and h, if f(x)≤g(x)≤h(x) for all x-values on an interval except for a single value x=a, and the limits of f and h at x=a are equal to L, then the limit of g at x=a must be equal to L as well. This may seem simple but it's pure genius. Learn how it helps us find tricky limits like sin(x)/x at x=0.

Limits_from_equations_direct_substitution_

Take your first steps in finding limits algebraically. For example, find the limit of x²+5x at x=2, or determine whether the limit of 2x/(x+1) at x=-1 exists.

All video content by Khan Academy is under their license: CC by NC SA

Website created using Khan Academy Static Downloader